Covering Radius of Matrix Codes Endowed with the Rank Metric

نویسندگان

  • Eimear Byrne
  • Alberto Ravagnani
چکیده

In this paper we study properties and invariants of matrix codes endowed with the rank metric, and relate them to the covering radius. We introduce new tools for the analysis of rank-metric codes, such as puncturing and shortening constructions. We give upper bounds on the covering radius of a code by applying different combinatorial methods. The various bounds are then applied to the classes of maximal rank distance and quasi maximal rank distance codes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Properties of Codes with the Rank Metric

In this paper, we study properties of rank metric codes in general and maximum rank distance (MRD) codes in particular. For codes with the rank metric, we first establish Gilbert and sphere-packing bounds, and then obtain the asymptotic forms of these two bounds and the Singleton bound. Based on the asymptotic bounds, we observe that asymptotically Gilbert-Varsharmov bound is exceeded by MRD co...

متن کامل

Multi-Covering Radius for Rank Metric Codes

The results of this paper are concerned with the multi-covering radius, a generalization of covering radius, of Rank Distance (RD) codes. This leads to greater understanding of RD codes and their distance properties. Results on multi-covering radii of RD codes under various constructions are given by varying the parameters. Some bounds are established. A relationship between multi-covering radi...

متن کامل

Grassmannian Codes as Lifts of Matrix Codes Derived as Images of Linear Block Codes over Finite Fields

Let p be a prime such that p ≡ 2 or 3 (mod 5). Linear block codes over the non-commutative matrix ring M2(Fp) endowed with the Bachoc weight are derived as isometric images of linear block codes over the Galois field Fp2 endowed with the Hamming metric. When seen as rank metric codes, this family of matrix codes satisfies the Singleton bound and thus are maximum rank distance codes, which are t...

متن کامل

Codes Endowed With the Rank Metric

We review the main results of the theory of rank-metric codes, with emphasis on their combinatorial properties. We study their duality theory and MacWilliams identities, comparing in particular rank-metric codes in vector and matrix representation. We then investigate the combinatorial structure of MRD codes and optimal anticodes in the rank metric, describing how they relate to each other.

متن کامل

Some Fixed Point Theorems in Generalized Metric Spaces Endowed with Vector-valued Metrics and Application in Linear and Nonlinear Matrix Equations

Let $mathcal{X}$ be a partially ordered set and $d$ be a generalized metric on $mathcal{X}$. We obtain some results in coupled and coupled coincidence of $g$-monotone functions on $mathcal{X}$, where $g$ is a function from $mathcal{X}$ into itself. Moreover, we show that a nonexpansive mapping on a partially ordered Hilbert space has a fixed point lying in  the unit ball of  the Hilbert space. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Discrete Math.

دوره 31  شماره 

صفحات  -

تاریخ انتشار 2017